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Why a Variance Inflation Factor of 10 Is
Not an Ideal Cutoff for Multicollinearity
Diagnostics

Cheng-Chang Jeng*
ABSTRACT

In linear regression analysis, the variance inflation factor (VIF) is often used to
determine whether multicollinearity exists among independent variables (IVs). Despite
its frequent use, no consensus has been achieved regarding a VIF threshold that reliably
indicates multicollinearity. Although researchers have historically indicated that cutoff
values ranging from 2 to 10 should be used, no single value has gained universal
acceptance. To address this problem, this study used an R-based platform to calculate VIF
values under various conditions, including different numbers of IVs (denoted as k) and
paired correlation coefficients between Vs (denoted as 7). The study discovered that VIF
values are influenced by both the number of IVs and the degree of correlation between
them. Moreover, when the correlation coefficient is held constant and the number of IVs
increases infinitely, the VIF tends to converge at a limit. The study also asserts that
employing a universal VIF cutoff for multicollinearity detection is impractical because
the cutoff must be determined with consideration of both the specific number of [Vs in a
linear regression model and the correlation coefficients researchers deem to be acceptable.
The study developed a table of VIF cutoff values to aid researchers in identifying suitable
cutoff values for their linear regression analyses. The study concludes by discussing its
limitations.
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I. Introduction

This section first discusses the literature review of linear regression analysis and
defines the variance inflation factor (V/F) and other indexes commonly used in
multicollinearity diagnostics. Various criteria and issues associated with using VIF are

also explored, and then the motives and objectives of this study are presented.

A. Literature Review

(A) Defining R’, Tolerance, and VIF

The term “multiple linear regression analysis” is conveniently referred to as “linear
regression analysis” in this study. A linear regression analysis is a crucial form of
statistical analysis in several fields. Its purpose can be roughly divided into three
categories (Chiou, 2021; Lin, 2014; Yen, 1994): (1) establishing prediction models, (2)
exploring the strength and direction of associations between independent variables (IVs)
and a dependent variables (DV), and (3) observing the trends in time series. Due to its
wide range of applications, linear regression analyses are often utilized in quantitative
research in the field of education.

In a linear regression analysis, reducing the correlations among IVs enables
researchers to interpret the prediction model with precision. Moderate or high degrees of
correlation among IVs represent multicollinearity. The primary dangers of
multicollinearity are as follows (Lewis-Beck, 1980): (1) a regression equation may have
a fairly high R? value, but the coefficients of the IVs are not significant; (2) the coefficients
of some IVs may change drastically with adding or removing other IVs; (3) the
coefficients of the IVs will become unstable, with extremely high (or low) values which
should indicate significance (or insignificance), but these indicators are not reliable,
making the model difficult to explain; (4) interpretations of the polarity (positive or
negative sign) of the IV coefficients may be the opposite of the norm. Diagnosing whether
multicollinearity exists among the IVs is thus a crucial issue in a linear regression analysis.

Tools commonly used to detect multicollinearity include Pearson’s correlation
coefficient, R’, tolerance, and VIF. The latter three are defined as follows (Darmawan &
Keeves, 2006; Hair et al., 2006; James et al., 2013):

A regression equation with n observed values and j IVs is as shown in Equation (1):
Y = aix; + azx,+ azxz + -+ ajx; + c. (D)
Thus, the coefficient of determination of §, also known as explanatory power R?,
is defined as shown in Equation (2):

Rz — SSregression — Z?:l(yi—l_/)z (2)
SStotal Z?=1(Yi_37)2'
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Because Equation (3) is established,

SStotal = SSregression + SSresidual~ (3)

Thus, R can be rewritten as shown in Equation (4):

RZ =1-— SSresidual __ Z?=1(yi—5/i)2 (4)

SStotal Z?=1(Yi_y)2 )
The R in Equation (5) is referred to as multiple correlation (Hair et al., 2006):
R = VR2 Q)
R? is referred to as squared multiple correlation or the coefficient of determination.
For an IV x; in Equation (1), i € [1...j], with x; as a DV and the remainings as
IVs, a linear regression for determining the coefficient of determination of x; is given by
Equation (6):
Xi = a1Xq +azX; + o+ X + QX o+ aix + ¢, apxg = 0. (6)

The coefficient of determination R} is calculated with x; as the DV, then tolerance

T; and VIF; are derived as Equation (7) and Equation (8) correspondingly:
T; =1— R?. (7)

1
VIF, == )

l

(B) Using VIF>10 to Determine Whether Multicollinearity Exists

Although VIF has a clear mathematical definition, there is no fixed standard for this
index. Indeed, standards may vary substantially. Nevertheless, many journal papers,
postgraduate theses, and doctoral dissertations use VIF>10 as an indicator of
multicollinearity among [Vs. Wen (2013) observed that from 2007, most of the papers in
NTU Management Review used VIF to discuss multicollinearity, with VIF=10 as the
cutoff value. Similarly, on analyzing Journal of Educational Research and Development
from 2006 to 2020, five types of discussions on multicollinearity are found as follows:

1. describing the dangers of multicollinearity but not presenting the means and
standards of diagnosing multicollinearity (Chang, 2012; Lin & Chien, 2019);

2. adopting VIF to diagnose multicollinearity but not clearly explaining the standard
that was used (Lin & Tsai, 2014; Wang & Hsiao, 2006; Yeh, 2020);

3. adopting the correlation coefficients among Vs to diagnose multicollinearity but
using different standards, including r>.8 (Wu, 2020), 7>.9, and >.95 (Jeng & Chen, 2007);

4. using VIF>10 to determine whether multicollinearity exists among the IVs (Chang,
2017; Chao & Luh, 2019; Lee & Yu, 2007);

5. adopting other methods such as removing variables or Partial Least Squares
Structural Equation Modeling (PLS-SEM) to diagnose and inhibit multicollinearity but
not specifying the judgment criteria (Chen, Li, & Tung, 2019; Wang, 2011).
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International studies also frequently use the standard of V/F>10 as a rule of thumb
in multicollinearity detection (Cohen et al., 2003). Hair et al. (2006) confirmed that most
studies use VIF>10 to determine whether multicollinearity exists among IVs, despite the
fact that this threshold still allows for high multicollinearity. For example, when multiple
correlation R equals .9 (meaning that R’ equals .81), the tolerance is .19 and the
corresponding VIF is already 5.3 (Hair et al., 2006). In other words, if it only takes a
tolerance of less than .19 and VIF greater than 5.3, then the correlation among the IVs
will be greater than .9, which high level of correlation among IVs indicates
multicollinearity in a linear regression. Consequently, Hair et al. pointed out that
multicollinearity may even exist among Vs when VIF ranges from 3 to 5. However, many
studies continue to use VIF=10 as a threshold and cite that this threshold is suggested by
Hair et al. These studies might misinterpret what Hair et al.’s meaning. This is an issue

worth exploring further.
(C) Adopting Different VIF Values for Multicollinearity Diagnostics

Although VIF>10 is a common rule of thumb, a simple example can be used to
demonstrate that this criterion is not reliable. In Table 1, Y'is the DV and X; are X are the
IVs. The correlation coefficient of X; and X> is 7=.904.

Table 1

Example of multicollinearity between IVs for VIF<10
Y X X2
25 128 126
30 132 129
45 145 135
50 148 150
35 140 135
40 142 140
31 138 131
27 135 127
21 122 121
38 142 138

Regression of the individual IVs with regard to DV Y gives Y=1.076X;-113.415 and
Y=1.034X>-103.515. The standardized regression coefficients corresponding to the two
regression equations are Zy = .944Zx; and Zy=.937Zx>, respectively, indicating that the
each of the IVs has significant predictive power with regard to DV Y. However, Table 2
represents the statistical attributes of the regression of the two IVs X; and X> with regard
to dependent variable Y. Table 2 shows that neither of the two IVs has statistical

significance. Clearly, collinearity exists between X; and X, causing them to drag each
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other down and reducing the significance of both. It’s worth noting that the VIF of X; and
X> at this point is 5.459, which is far smaller than the commonly-applied cutoff value
VIF=10. This example represents the first three of the four dangers discussed by Lewis-

Beck (1980), and empirically corroborates Hair et al.’s suggestion.

Table 2
Linear regression analysis of example
Variable  Estimate SE 95% CI )% VIF
LL UL
Intercept -107.612 6.046  -121.907 -93.316 .000
X .073 130 -234 379 .593 8.788
Xo 984 120 701 1.267 .000 8.788

Some readers may argue that the above example is too simplistic, and especially the
sample size is too small. To settle the argument, a simulation program listed in Appendix
1 initially provides as many as 5,000 normally distributed samples (in Line 7, 17, and 18)
for each variable. The sample size of simulation can be altered by assigning different
value to variable N in Line 7. Additionally, readers may set different value to variable
corr in order to generate desire paired correlation coefficients of two IVs for a numerical
simulation. From commented Line 10 to commented Line 16, the simulation program
prepares statements for generating variables with three more different distributions such
as binary, Poisson, and Gamma. Using the proposed program in Appendix 1 with different
sample size, paired correlation coefficients, and distributions of IVs, the more general
results are still closed to the outcomes of simplified example in Table 2 and therefore the
discussion about the simplified example is valid.

The discussion for the simplified model in Table 1 shows that using VIF>10 to
determine whether multicollinearity exists among Vs may lead to misjudgment. Some
researchers believe that multicollinearity may become a problem when VIF equals 4 or 5
(Pan & Jackson, 2008; Rogerson, 2001) or is between 3 and 5 (Hair et al., 2006). As seen
in Equation (7) and Equation (8), the tolerance T; = 1 — R} is the proportion of the

variance in the IV x; that is unexplained by the other IVs. Then VIF; =% can be

i
explained as the magnification factor of total variance to the unexplained variance in
Equation (6), and therefore VVIF can be interpreted as the inflation times of standard
error in a linear regression analysis. Because VVIF is easier to interpret, it has been
suggested that VVIF can be used to observe the multicollinearity among IVs. For
example, suppose that VIF=4 and v/VIF=2, in this situation, the standard error of linear
regression analysis is twice as high as when VIF=1. For the above reason, Miles & Shevlin
(2001) suggest VIF>4 as a criterion for determining whether multicollinearity exists.
Paired correlation coefficient » is often used as a tool for multicollinearity
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diagnostics. Most studies adopt 7>.8 as the cutoff (Vatcheva et al., 2016). However, these
studies tend to use R’ as the basis for judgment (Lewis-Beck, 1980). Based on the
suggestions made by Lewis-Beck (1980) and Vatcheva et al. (2016), it can be inferred
that if multiple correlation R=.8 is used as the cutoff of multicollinearity detection, then
R’=.64 and T=.36, which means that the cutoff value of VIF is 1/.36=2.778. As a result,
some researchers believe that multicollinearity may become an issue if a VIF value is
greater than 2 (Jeng, 2021; Sellin, 1990, as cited in Darmawan & Keeves, 2006).

(D) Influence of Number of IVs on VIF

Vatcheva et al. (2016) employed two and three IVs to discuss the relationship
between multicollinearity and changes in paired correlation. The results of their
experiments reveal that VIF<5 does not mean no multicollinearity exists among IVs. They
then suggested that V/F judgment should be even more cautious when there are more I'Vs.
They nonetheless did not present the relationship between the number of IVs and the VIF.
However, theoretically, for a linear regression analysis equation with an infinite number
of IVs, the R’ of the equation will ultimately equal 1 (Berry, 1993). From this, it can be
inferred that a greater number of IVs in a linear regression analysis equation makes R’
grow faster and therefore multiple correlation R is more significant. The ascending of R’
will have a knock-on effect on making folerance smaller, and ultimately inflate the VIF.
Therefore, the number of IVs should also be a crucial variable in determining the cutoff
value of the VIF.

B. Research Motives and Objectives

The VIF criterion used to determine the multicollinearity among IVs varies from
researcher to researcher. Although VIF>10 is the most commonly used, it is not strict
enough. Furthermore, although VIF is thought to be associated with the number of Vs, a
relationship between the two has yet to be proposed. Thus, the objectives of this study are
to determine the relationships among the number of IVs, correlations, and VIF, then to

propose suitable values for VIF cutoffs.

I1. Research Methods

In order to explore changes in the VIF resulting from different numbers of IVs and
varying degrees of correlation among them, numerical simulations are introduced in this

section.

A. Steps in the Simulation Process

The process of the numerical simulations is as follows:

Step 1. Import relevant libraries and initialize variable settings.
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Step 2. Based on the paired correlations among the IVs, initially generate a normally-
distributed dataset with 1,000 data for each variable. Note that the standard deviation of
each variable is 1 and the mean of each variable equals 0.

Step 3. Calculate the VIF values of all of the IVs in Step 2. Due to the fact that the
paired correlations » among the IVs are identical, the R? values of the IVs will all be the
same, as will the VIF values. Repeat Step 2 and Step 3 until the set maximum correlation
coefficient has been reached.

Step 4. Sort the correlation coefficients, numbers of IVs, and the corresponding VIF

values and draw a graph.

B. Development Platform

This program was developed using the R platform Ver. 4.1.0. Its final version is

shown in Appendix 2.

C. Explanation of the Simulation Program

Lines 1 through 6 in Appendix 2 import the libraries needed to develop the program.
Table 3 presents the purposes and functions of the imported libraries. All libraries used
are cited and referenced so that other researchers can install the libraries in order to run
the program shown in Appendix 2. Lines 7 through 14 initialize the variables needed for
the program, and Table 4 explains the meanings of the variables to help other researchers

explore the results by changing the default values of variables.
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Table 3
Purposes of libraries
Library name Explanation of purpose
faux Calls the rnorm_multi function and generates a normally-distributed

dataset based on parameters such as mean, standard deviation, and
correlation coefficients (DeBruine, 2021).

DAAG Calls the vif function to calculate the VIF of each IV and forms a vector
(Maindonald & Braun, 2020).

tibble Calls the add column function and adds a new column to the data
frame (Miiller & Wickham, 2021).
reshape?2 Calls the melt function and converts the data frame into a dataset that

can be drawn into a graph by ggplot (Wickham, 2007).

ggplot2 Calls the ggplot function and draws a statistical graph (Wickham,
2016).

GGally An expanded library of ggplot2 (Schloerke et al., 2021).

Table 4

Names and purposes of variables

Variable name Explanation of purpose

minNumIVs  Minimum number of IVs (there must be at least two IVs to check
multicollinearity, so this variable was set at 2)

maxNumlIVs Maximum number of [Vs

minCorr Minimum value of correlation coefficients
maxCorr Maximum value of correlation coefficients
corrStep Step length from minCorr to maxCorr

N Quantity of data to be generated for each IV

vecCorrelations  Vector from minCorr to maxCorr with corrStep as step length

rowCount Number of rows needed to convert VIFVector into a data matrix

In Line 12, the default sample size 1,000 is assigned to variable N which is used to
generate IVs in Line 18. The corr variable in the for loop beginning in Line 15 represents
the correlation coefficients in the vector named vecCorrelations. In the loop, rnorm_multi
is used to generate numVars groups of normally-distributed data with paired correlation
as corr, mean as 0, and standard deviation as 1. When numVars = 6 and corr = .9, for
instance, the datasets in Figure 1 are generated. As can be seen in Figure 1, the coefficients
of the correlations between the variables equal .9, and the data within each variable
present normal distributions. With Figure 1 as an example, the generated variables are
sequentially renamed V1, V2, V3, ..., V6, among which V1 is regarded as the DV and
the remaining five variables, V2 to V6, are regarded as the IVs for VIF estimation. In
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Line 22, a linear regression analysis model M is established to facilitate calculation of the
VIF of model M in Line 23. Lines 24 through 28 connect the VIF values estimated from
different correlation coefficients corr and different numbers of variables into a vector.

The purpose of Line 32 outside of the loop is to re-organize the aforementioned
vector into the data matrix matrix VIF with rowCount rows and maxNumlIVs-1 columns.
Lines 33 to 37 convert the data matrix matrixVIF into the data frame format of R and
name it VIFdata. Line 38 saves the data frame VIFdata as a csv file and names the csv
file based on the maximum number of IVs and the correlation coefficient range of the
data frame.

Lines 39 and 40 convert data frame VIFdata into a format compatible with ggplot
function for graph drawing. Finally, Line 41 plots the correlation coefficients of different
IVs with the number of IVs as the x axis and the VIF value as the y axis.

Figure 1
Example of normally distributed IV dataset with 6 IVs and » =.90.
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II1. Results and Discussion

This section first displays the VIF curves resulting from different number of IVs and
correlation coefficients, and explains the characteristics of these VIF curves. Next, the
relationships between the VIF curve graphs presented in this study and the VIF cutoff
values suggested by previous research are discussed. Finally, at the end of this section, a

novel table lookup method to determine the VIF cutoff values is proposed.

A. VIF Curves Corresponding to Different Numbers of IVs and
Correlation Coefficients

Let the R program in Table 3 set maxNumlIVs as 25, minCorr as .3, maxCorr as .9,
and corrStep as .1. After the program with the above settings was executed, the curves
were plotted as shown in Figure 2.

Observations of Figure 2 show the following: (1) The exponential rise to limits in
VIF values when the correlation coefficients of the variables ranged from .3 to .9. (2) The
intercept spacing between the curves of different correlation coefficients increases
exponentially. For instance, the intercept spacing between the curves of correlation
coefficients .9 and .8 is several times that between the curves of correlation coefficients .8
and .7. (3) VIF values increase with the number of independent IVs; however, the curves
show that the VIF values of individual curves will reach a certain limit. For instance, the
VIF limit of the curve of correlation coefficient .8 is around 5. (4) When the correlation
coefficient of two variables has reached .9, the VIF is only slightly higher than 5.2. (5)
Even with a correlation coefficient of .9 for 25 IVs, the VIF is still less than 10. (6) The
VIF limits of individual curves with a correlation coefficient less than .9 among the IVs

are all far less than 10.
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Figure 2
VIF curves simulated with 1,000 samples for 2 to 25 IVs and  ranging from .3 to .9.
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Next, setting maxNumlIVs as 500, minCorr as .1, maxCorr as .95, and corrStep as .05,
the program was executed to observe the curve trends with more IVs and expanded
correlation coefficients from .1 to .95.

The trends of the curves in Figure 3 and the relationships among them are identical
to those in Figure 2. However, it is worth noting that when the correlation coefficient is
equal to .95 (top curve in Figure 3) and there are only 2 IVs, the VIF reaches 10.26, and
when the number of Vs increases to 500, the V/F limit of the top curve in Fig 3 is close
to 20.
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Figure 3
VIF curves simulated with 1,000 samples for 2 to 500 IVs and r ranging from .1 to .95
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B. Discussion

The results in Figs. 2 and 3 show that the changes in the VIF are associated with the
correlation coefficients of the IVs and the number of IVs in regression models. This
finding is similar to that of Vatcheva et al. (2016). However, this study further finds that
the VIF does not increase infinitely with the number of IVs in regression models. When
the coefficient of correlation among the IVs is a certain value, an increasing number of
IVs will cause the VIF to converge at a certain limit.

It can also be noted that when the paired correlation of the [Vs is .5 and the number
of IVs increases, the VIF limit will be around 2. Furthermore, 7=.5 is the median of [0,1],
so if the correlation coefficient » of the IVs is less than .5, a low degree of correlation
exists. When 7<.5 and the number of IVs increases, the VIF will certainly be less than 2.
It is worth noting that as shown in Figure 2, with a moderate degree of correlation (r=.6
or.7) and only two IVs, the VIF is still less than 2. Only when there is a sufficient number
of IVs does the VIF exceed 2. Thus, if researchers believe that low degrees of correlation
(r<.5) are important to their regression models, using VIF<2 to detect multicollinearity
might be useful. The discussion above corresponds to the suggestion made by some
researchers to be wary of multicollinearity when VIF is around 2 (Jeng, 2021; Sellin,
1990).

A number of researchers have also suggested setting the cutoff value of VIF at 3, 4,
or 5, with multicollinearity possible when VIF is between 3 and 5 (Hair et al, 2006; Miles
& Shevlin, 2001; Pan & Jackson, 2008; Rogerson, 2001). The results of this study

revealed that with an adequate number of IVs and correlation coefficients between .65
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and .80, the value of the VIF should also be somewhere between 3 and 5. If there are
relatively few Vs, such as two, and the correlation coefficients are between .8 and .9,
then the VIF values will also fall between 2.78 and 5.26. When correlation coefficients
are between .8 and .9 and so a high degree of correlation already exists among the Vs,
the VIF values will still be around 3 to 5, which is remarkably lower than the cutoff value
of VIF=10 suggested in most studies.

With regard to VIF>10, observations of Figure 2 and 3 show that when the
correlation coefficients of the IVs are .9, the VIF values are still less than 10 even when
there are many I'Vs. From the two figures, it can be inferred that VIF=10 is the limit when
r=.9. In other words, if VIF=10 serves as the cutoff value for multicollinearity, it will
overlook the hazard of high correlation (=.9) among the IVs. Further observation of
Figure 3 revealed that V'IF=10.26, which is only slightly greater than 10, when »=.95 and
there are only two IVs. Researchers who are in the habit of rounding their numbers will
find no multicollinearity even when a high degree of correlation exists among Vs (7=.95).

The discussion in this section shows that VIF values increase with the correlation
coefficients of the IVs; they also increase with the number of IVs but tend to converge at
a limit value. Two factors should therefore be taken into consideration when VIF is used
to detect multicollinearity in a linear regression analysis: (1) the minimum degree of
correlation among the IVs desired by the researchers based on the characteristics of their

studies, and (2) the number of IVs in the linear regression analysis.
C. Method to Determine VIF Cutoffs

As changes in the VIF are associated with the paired correlations among [Vs and the
number of IVs, these two factors should both be taken into consideration when
multicollinearity diagnostics are conducted during a linear regression analysis. Assigning
30 to maxNumlVs, .4 to minCorr, .99 to maxCorr, and .01 to corrStep, the program in
Appendix 2 produced Table 6 and saved Table 6 as a csv file. In Table 6, the rows indicate
the correlation coefficients () and the columns indicate the number of IVs (k). Two
examples are given below to demonstrate how this table is used:

Example 1: Suppose a linear regression analysis in a study contains five IVs (k=5).
The researchers believe the best degree of correlation among the IVs to be around .5
(r=.5). Looking up the row r=.5 and the column 4=5 in Table 6 thus gives VIF=1.67 as
the cutoff value in their study to determine whether the IVs in the linear regression model
have issue of multicollinearity.

If the variables in the regression model are not paired correlated, the researchers may
adopt a stepwise method to diagnose multicollinearity. In this case, a full model is first
examined with the 5 IVs and then the IV which VIF is the highest, not significant, and is
equal or greater than the initial cutoff value 1.67 is eliminated from the full model. Since

there are 4 IVs left in the regression model, by looking up the row 7=.5 and the column
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k=4 in Table 6 the researchers obtain V/F=1.60 as the new cutoff value for the next round
of stepwise regression. Repeating the process and deleting one IV at a time, in the end the
final model retains the most uncorrelated IVs.

Example 2: Suppose a regression model has 7 IVs. A statistical analysis reveals that
the VIF values of some of the Vs are greater than 3. Table 6 shows that when &=7 and
VIF values are in interval between 3.0 and 4.0, the correlation coefficients of the IVs (7)
may range from .72 to .78, which indicates moderately high correlation. Because high
correlation coefficients between variables usually cause multicollinearity, in this case, the

researchers should suspect that multicollinearity exists among the IVs.

IV. Conclusions, Limitations of the Study and Directions for

Future Research

In this section, brief conclusions are drawn from the multicollinearity simulations,
then the limitations of the study are summarized. Finally, the directions for future research

are suggested.
A. Conclusions

Based on different considerations, researchers in the past have adopted varying VIF
cutoff values, the most common of which is VIF’=10. However, the numerical simulations
proposed in this study reveal that VIF=10 is not strict enough as a cutoff value. It is also
suggested that the number of IVs and the degree of correlation among the IVs must also
be taken into account when determining a suitable VIF value. Accordingly, VIF cutoff
values should be determined individually based on the number of IVs and the degree of
correlation among the IVs. For a smaller correlation coefficient () or number of IVs (%),
the VIF cutoff value should be more conservative. As a result, the table of VIF cutoff
values proposed in this study is an improvement tool that does help researchers to look
up the most appropriate cutoff values for multicollinearity diagnostics. Some researchers
may consider using folerance instead of VIF. Since tolerance is a reciprocal of VIF,
researchers still can look up the Table 6 to obtain a VIF and then get a tolerance cutoff
value by calculating the multiplicative inverse of the VIF. However, the direction of
explanation for a tolerance cutoff should be reversed to its reciprocal value VIF.

It is also found that with a fixed correlation coefficient () and an increasing number
of IVs (k), the VIF converges. However, the convergence is practically provided, but not
mathematically proven. To put it simply, the VIF cutoff can be defined a function of
correlation coefficient () and the number of IVs (k). This assumption will require further

formal study.
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B. Limitations of this Study and Suggestions for Future Research

There are several shortcomings of this study. First, the data are generated by
simulation programs not from real life. Second, the VIF' computations simplistically
constraint on paired correlated IVs that does not completely correspond to the definition
of multicollinearity. Third, the simulations only act on continuous data. Nevertheless, a
researcher may have a linear regression model with different type of IVs: continuous,
categorical, and ordinal predictors. Future research could examine the proposed method
with large real-life sample and different data types of IVs. Because practical difficulties
of simulating I'Vs with multiple correlations were encountered in this study, it is suggested
that future researchers could develop relatively complete programs to examine
multicollinearity of linear regression models with mixed-type variables.

According to Example 1 in section Method to Determine VIF Cutoffs, if the
variables are not paired correlated, it is recommended to use the stepwise regression
method for analysis. However, this method has its limitations. Stepwise regression is a
data-driven approach in regression analysis that may result in retaining high-cost
variables or deleting theoretically important variables when dealing with multicollinear
variables. Therefore, it is recommended for researchers to consider using theory-driven
hierarchical regression methods for addressing this issue. However, this study did not
discuss or experiment with hierarchical regression methods for handling multicollinear
variables. It is suggested that readers conduct further research in the future.

In the end, simulating the changes in VIF based on the paired correlation of IVs is
simple and has been used in past studies to detect multicollinearity among IVs. However,
multicollinearity means that an IV may have a multiple correlation rather than a paired
correlation with other IVs. Despite this drawback, using paired correlation to estimate the
changes in VIF produces the lower bound of VIF values and therefore still has applicable

value.
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Table 6
VIF cutoff values

k

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.40
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52
0.53
0.54
0.55
0.56
0.57

1.19
1.20
1.21
1.23
1.24
1.25
1.27
1.28
1.30
1.32
1.33
1.35
1.37
1.39
1.41
1.43
1.46
1.48

1.30
1.31
1.33
1.35
1.37
1.39
1.41
1.43
1.45
1.48
1.50
1.53
1.55
1.58
1.61
1.64
1.67
1.71

1.36
1.38
1.40
1.43
1.45
1.47
1.49
1.52
1.54
1.57
1.60
1.63
1.66
1.69
1.73
1.76
1.80
1.84

1.41
1.43
1.45
1.48
1.50
1.53
1.55
1.58
1.61
1.64
1.67
1.70
1.73
1.77
1.80
1.84
1.88
1.92

1.44
1.47
1.49
1.51
1.54
1.57
1.59
1.62
1.65
1.68
1.71
1.75
1.78
1.82
1.86
1.90
1.94
1.98

1.47
1.49
1.52
1.54
1.57
1.60
1.63
1.65
1.69
1.72
1.75
1.78
1.82
1.86
1.90
1.94
1.98
2.03

1.49
1.52
1.54
1.57
1.59
1.62
1.65
1.68
1.71
1.74
1.78
1.81
1.85
1.89
1.93
1.97
2.01
2.06

1.51
1.53
1.56
1.58
1.61
1.64
1.67
1.70
1.73
1.77
1.80
1.84
1.87
1.91
1.95
2.00
2.04
2.09

1.52
1.55
1.57
1.60
1.63
1.66
1.69
1.72
1.75
1.78
1.82
1.85
1.89
1.93
1.97
2.02
2.06
2.11

1.53
1.56
1.58
1.61
1.64
1.67
1.70
1.73
1.76
1.80
1.83
1.87
1.91
1.95
1.99
2.03
2.08
2.13

1.54
1.57
1.60
1.62
1.65
1.68
1.71
1.74
1.78
1.81
1.85
1.88
1.92
1.96
2.00
2.05
2.10
2.14

1.55
1.58
1.60
1.63
1.66
1.69
1.72
1.75
1.79
1.82
1.86
1.89
1.93
1.97
2.02
2.06
2.11
2.16

1.56
1.59
1.61
1.64
1.67
1.70
1.73
1.76
1.80
1.83
1.87
1.90
1.94
1.98
2.03
2.07
2.12
2.17

1.57
1.59
1.62
1.65
1.68
1.71
1.74
1.77
1.80
1.84
1.88
1.91
1.95
1.99
2.04
2.08
2.13
2.18

1.57
1.60
1.62
1.65
1.68
1.71
1.74
1.78
1.81
1.85
1.88
1.92
1.96
2.00
2.04
2.09
2.14
2.19

1.58
1.60
1.63
1.66
1.69
1.72
1.75
1.78
1.82
1.85
1.89
1.93
1.97
2.01
2.05
2.10
2.14
2.19

1.58
1.61
1.64
1.66
1.69
1.72
1.76
1.79
1.82
1.86
1.89
1.93
1.97
2.02
2.06
2.10
2.15
2.20

1.59
1.61
1.64
1.67
1.70
1.73
1.76
1.79
1.83
1.86
1.90
1.94
1.98
2.02
2.06
2.11
2.16
2.21

1.59
1.62
1.64
1.67
1.70
1.73
1.76
1.80
1.83
1.87
1.90
1.94
1.98
2.03
2.07
2.12
2.16
2.21

1.59
1.62
1.65
1.68
1.71
1.74
1.77
1.80
1.84
1.87
1.91
1.95
1.99
2.03
2.07
2.12
2.17
2.22

1.60
1.62
1.65
1.68
1.71
1.74
1.77
1.81
1.84
1.88
1.91
1.95
1.99
2.03
2.08
2.12
2.17
2.22

1.60
1.63
1.65
1.68
1.71
1.74
1.78
1.81
1.84
1.88
1.92
1.96

1.60
1.63
1.66
1.69
1.72
1.75
1.78
1.81
1.85
1.88
1.92
1.96

1.60
1.63
1.66
1.69
1.72
1.75
1.78
1.81
1.85
1.89
1.92
1.96

2.00 2.00 2.00
2.04 2.04 2.05

2.08
2.13
2.18
2.23

2.09
2.13
2.18
2.23

2.09
2.14
2.18
2.24

1.61
1.63
1.66
1.69
1.72
1.75
1.78
1.82
1.85
1.89
1.93
1.97
2.01
2.05
2.09
2.14
2.19
2.24

1.61
1.64
1.66
1.69
1.72
1.75
1.79
1.82
1.85
1.89
1.93
1.97
2.01
2.05
2.10
2.14
2.19
2.24

1.61
1.64
1.67
1.69
1.72
1.76
1.79
1.82
1.86
1.89
1.93
1.97
2.01
2.05
2.10
2.15
2.19
2.24

1.61
1.64
1.67
1.70
1.73
1.76
1.79
1.82
1.86
1.90
1.93
1.97
2.01
2.06
2.10
2.15
2.20
2.25

1.61
1.64
1.67
1.70
1.73
1.76
1.79
1.83
1.86
1.90
1.94
1.97
2.02
2.06
2.10
2.15
2.20
2.25
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Table 6 (continued)
VIF cutoff values

&3

k

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0.58
0.59
0.60
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70
0.71
0.72
0.73
0.74
0.75

1.51
1.53
1.56
1.59
1.62
1.66
1.69
1.73
1.77
1.81
1.86
1.91
1.96
2.02
2.08
2.14
2.21
2.29

1.74
1.78
1.82
1.86
1.90
1.95
2.00
2.05
2.10
2.16
2.22
2.29
2.36
2.44
2.52
2.60
2.70
2.80

1.88
1.92
1.96
2.01
2.06
2.11
2.17
2.23
2.29
2.36
243
2.50
2.58
2.67
2.76
2.86
2.96
3.08

1.97
2.01
2.06
2.11
2.16
2.22
2.28
2.34
241
248
2.55
2.63
2.72
2.81
291
3.01
3.13
3.25

2.03
2.07
2.13
2.18
2.23
2.29
2.35
2.42
2.49
2.56
2.64
2.73
2.81
291
3.01
3.12
3.24
3.37

2.07
2.12
2.17
2.23
2.29
2.35
241
248
2.55
2.63
2.71
2.79
2.88
2.98
3.09
3.20
3.32
345

2.11
2.16
2.21
2.27
2.33
2.39
245
2.52
2.60
2.67
2.76
2.84
2.94
3.04
3.15
3.26
3.39
3.52

2.14
2.19
2.24
2.30
2.36
242
2.49
2.56
2.63
2.71
2.80
2.88
2.98
3.08
3.19
3.31
343
3.57

2.16
2.21
2.27
2.32
2.38
2.45
2.51
2.59
2.66
2.74
2.83
2.92
3.01
3.12
3.23
3.35
3.47
3.61

2.18
2.23
2.29
2.34
241
2.47
2.54
2.61
2.69
2.77
2.85
2.94
3.04
3.15
3.26
3.38
3.51
3.65

2.19
2.25
2.30
2.36
2.42
2.49
2.56
2.63
2.71
2.79
2.87
2.97
3.07
3.17
3.28
3.40
3.53
3.68

2.21
2.26
2.32
2.38
2.44
2.50
2.57
2.65
2.72
2.81
2.89
2.99
3.09
3.19
3.30
343
3.56
3.70

2.22
2.27
2.33
2.39
2.45
2.52
2.59
2.66
2.74
2.82
291
3.00
3.10
3.21
3.32
3.45
3.58
3.72

2.23
2.28
2.34
2.40
2.46
2.53
2.60
2.67
2.75
2.83
2.92
3.02
3.12
3.22
3.34
3.46
3.60
3.74

2.24
2.29
2.35
241
2.47
2.54
2.61
2.68
2.76
2.85
2.94
3.03
3.13
3.24
3.35
3.48
3.61
3.76

2.25
2.30
2.36
2.42
2.48
2.55
2.62
2.69
2.77
2.86
2.95
3.04
3.14
3.25
3.37
3.49
3.62
3.77

2.25
231
2.37
243
2.49
2.56
2.63
2.70
2.78
2.87
2.96
3.05
3.15
3.26
3.38
3.50
3.64
3.78

2.26
2.32
2.37
2.43
2.50
2.56
2.64
2.71
2.79
2.87
2.96
3.06
3.16
3.27
3.39
3.51
3.65
3.79

2.27
2.32
2.38
2.44
2.50
2.57
2.64
2.72
2.80
2.88
2.97
3.07
3.17
3.28
3.40
3.52
3.66
3.80

2.27
2.33
2.38
2.45
2.51
2.58
2.65
2.72
2.80
2.89
2.98
3.08
3.18
3.29
3.40
3.53
3.67
3.81

2.28
2.33
2.39
245
2.52
2.58
2.65
2.73
2.81
2.90
2.99
3.08
3.18
3.29
341
3.54
3.67
3.82

2.28
2.34
2.39
2.46
2.52
2.59
2.66
2.74
2.82
2.90
2.99
3.09
3.19
3.30
342
3.55
3.68
3.83

2.28
2.34
2.40
2.46
2.52
2.59
2.66
2.74
2.82
291
3.00
3.09
3.20
3.31
3.43
3.55
3.69
3.84

2.29
2.34
2.40
2.46
2.53
2.60
2.67
2.75
2.83
291
3.00
3.10
3.20
3.31
3.43
3.56
3.69
3.84

2.29
2.35
2.41
2.47
2.53
2.60
2.67
2.75
2.83
2.92
3.01
3.10
3.21
3.32
3.44
3.56
3.70
3.85

2.30
2.35
2.41
2.47
2.54
2.60
2.68
2.75
2.83
2.92
3.01
3.11
3.21
3.32
3.44
3.57
3.71
3.85

2.30
2.35
2.41
2.47
2.54
2.61
2.68
2.76
2.84
2.92
3.02
3.11
322
3.33
3.45
3.57
3.71
3.86

2.30
2.36
242
2.48
2.54
2.61
2.68
2.76
2.84
2.93
3.02
3.12
3.22
3.33
3.45
3.58
3.72
3.86

2.30
2.36
2.42
2.48
2.55
2.61
2.69
2.76
2.84
2.93
3.02
3.12
322
3.33
3.45
3.58
3.72
3.87
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Table 6 (continued)
VIF cutoff values

k

7

9

10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

29

30

0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89
0.90
0.91
0.92
0.93

2.37
2.46
2.55
2.66
2.78
291
3.05
3.21
3.40
3.60
3.84
4.11
4.43
4.81
5.26
5.82
6.51
7.40

291 3.20 3.38
3.03 3.34 3.53
3.16 3.48 3.68
3.30 3.65 3.86
3.46 3.82 4.05
3.64 4.02 4.26
3.83 4.24 4.49
4.05 4.48 4.75
4.29 4776 5.05
4.57 5.07 5.38
4.88 5.43 5.76
5.25 5.84 6.20
5.68 6.32 6.71
6.18 6.89 7.32
6.79 7.57 8.04
7.53 8.40 8.93
8.45 9.44 10.04
9.64 10.78 11.47

3.51
3.66
3.82
4.00
4.20
4.42
4.66
4.93
5.24
5.59
5.98
6.44
6.98
7.61
8.36
9.29
10.45
11.93

3.60 3.67
3.75 3.82
3.92 4.00
4.11 4.19
4.31 4.39
4.54 4.62
4.79 4.88
5.07 5.17
5.38 5.49
5.74 5.85
6.15 6.27
6.62 6.75
7.17 7.31
7.81 7.97
8.59 8.77
9.55 9.74
10.74 10.95
12.27 12.52

3.72
3.88
4.06
4.25
4.46
4.69
4.95
5.24
5.57
5.94
6.36
6.85
7.42
8.09
8.90
9.89
11.12

12.71

3.76
3.93
4.10
4.30
4.51
4.75
5.01
5.31
5.64
6.01
6.44
6.93
7.51
8.19
9.01
10.01
11.26
12.87

3.80 3.83 3.85 3.88 3.89 3.91 3.93 3.94 3.95 3.96 3.97 3.98 3.99 4.00 4.00 4.01 4.01 4.02
3.96 3.99 4.02 4.04 4.06 4.08 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.18 4.19 4.19
4.14 4.18 4.20 4.23 4.25 4.27 4.28 430 431 432 433 4.34 435 436 437 437 438 4.38
434 437 440 443 4.45 447 4.49 450 4.51 4.53 4.54 4.55 4.56 4.57 4.57 4.58 4.59 4.59
4.56 4.59 4.62 4.65 4.67 4.69 4.71 4.73 4.74 4.75 4.76 4.78 4.78 4.79 4.80 4.81 4.82 4.82
479 4.83 4.87 4.89 4.92 494 496 497 499 5.00 5.02 5.03 5.04 5.05 5.05 5.06 5.07 5.08
5.06 5.10 5.14 5.16 5.19 5.21 523 5.25 5.27 5.28 5.29 531 5.32 5.33 5.34 534 535 5.36
536 540 5.44 5.47 550 5.52 5.54 5.56 5.58 5.59 5.60 5.62 5.63 5.64 5.65 5.66 5.67 5.67
5.69 5.74 5.78 5.81 5.84 5.86 5.89 591 5.92 594 596 597 598 5.99 6.00 6.01 6.02 6.03
6.07 6.12 6.16 6.20 6.23 6.25 6.28 6.30 6.32 6.34 6.35 6.37 6.38 6.39 6.40 6.41 6.42 6.43
6.50 6.56 6.60 6.64 6.67 6.70 6.73 6.75 6.77 6.79 6.81 6.82 6.83 6.85 6.86 6.87 6.88 6.89
7.00 7.06 7.11 7.15 7.18 7.22 7.24 7.27 7.29 731 7.33 7.35 7.36 7.37 739 7.40 7.41 7.42
7.59 7.65 7.70 7.74 7.78 7.82 7.85 7.87 7.90 7.92 7.94 7.96 7.97 7.99 8.00 8.01 8.03 8.04
8.27 8.34 8.40 8.45 8.49 8.53 8.56 8.59 8.62 8.64 8.66 8.68 8.70 8.71 8.73 8.74 8.76 8.77
9.10 9.17 9.24 9.29 9.34 9.38 9.42 9.45 9.48 9.50 9.53 9.55 9.57 9.59 9.60 9.62 9.63 9.64
10.11 10.19 10.26 10.32 10.38 10.42 10.46 10.50 10.53 10.56 10.58 10.61 10.63 10.65 10.67 10.69 10.70 10.72
11.37 11.47 11.55 11.61 11.67 11.72 11.77 11.81 11.85 11.88 11.91 11.93 11.96 11.98 12.00 12.02 12.04 12.06

4.02
4.20
4.39
4.60
4.83
5.08
5.37
5.68
6.04
6.44
6.90
7.43
8.05
8.78
9.66
10.73
12.07

4.03
4.20
4.40
4.60
4.83
5.09
5.37
5.69
6.04
6.45
6.91
7.44
8.06
8.79
9.67
10.74
12.09

13.00 13.10 13.19 13.27 13.34 13.40 13.45 13.50 13.54 13.57 13.61 13.64 13.67 13.69 13.72 13.74 13.76 13.78 13.79 13.81
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Table 6 (continued)
VIF cutoff values
k

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
p

0.94 8.59 11.23 12.57 13.38 13.92 14.31 14.60 14.83 15.01 15.16 15.29 15.39 15.48 15.56 15.63 15.69 15.74 15.79 15.84 15.88 15.91 15.94 15.97 16.00 16.03 16.05 16.07 16.09 16.11
0.95 10.26 13.45 15.07 16.04 16.70 17.16 17.52 17.79 18.01 18.19 18.34 18.47 18.58 18.67 18.75 18.83 18.89 18.95 19.00 19.05 19.09 19.13 19.17 19.20 19.23 19.26 19.29 19.31 19.34
0.96 12.76 16.78 18.81 20.04 20.86 21.45 21.89 22.24 22.51 22.74 22.92 23.08 23.22 23.34 23.44 23.53 23.61 23.69 23.75 23.81 23.87 23.92 23.96 24.00 24.04 24.08 24.11 24.14 24.17
0.97 16.92 22.34 25.06 26.71 27.81 28.59 29.18 29.64 30.01 30.31 30.56 30.78 30.96 31.12 31.25 31.38 31.49 31.58 31.67 31.75 31.82 31.89 31.95 32.00 32.05 32.10 32.14 32.19 32.22
0.98 25.25 33.45 37.56 40.04 41.70 42.88 43.77 44.46 45.01 45.46 45.84 46.16 46.43 46.67 46.88 47.06 47.23 47.37 47.50 47.62 47.73 47.83 47.92 48.00 48.08 48.15 48.22 48.28 48.33
0.99 50.25 66.78 75.06 80.04 83.36 85.74 87.52 88.90 90.01 90.92 91.67 92.31 92.86 93.34 93.75 94.12 94.45 94.74 95.00 95.24 95.46 95.65 95.84 96.00 96.16 96.30 96.43 96.55 96.67
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Appendix 1
Program for Examining Multicollinearity of Two IVs with Paired Correlation
Line Statement
no.
1 require(DAAG) #for VIF function
2 require(ggplot2) #for ggplot
3 require(GGally) #Extension to ggplot2
4 require(faux) #for rnorm_multi
5 require(simstudy) #for genCorGen
6 require(lawstat) #for Levene test
7 N <- 5000 #sample size
8 corr <-.904 #paired correlation
9 numVars <- 3 #1 for dependent variable and 2 for independent variables
10 #1<-¢(91, .91, .91) # lambda for each new variable
11 #dat <- genCorGen(N, nvars = 3, params1 = 1, dist = "binary", rho = .99,
corstr = "cs", wide = TRUE) #Binary distribution
13 #1<-c(1, 1, 1) # lambda for each new variable
14 #dat <- genCorGen(N, nvars = 3, params]1 =1, dist = "poisson", rho = .92,
corstr = "c¢s", wide = TRUE) #Poisson distribution
15 #1<-c¢(1,1,1)#lambda for each new variable
16 #dat <- genCorGen(N, nvars = 3, params]1 =1, params2 = c(1, 1, 1), dist =
"gamma", tho = .92, corstr = "cs", wide = TRUE) #Gamma
distribution
17 1<-c¢(1,1,1)#lambda for each new variable
18 dat <- genCorGen(N, nvars = 3, params1 = I, params2 = 1, dist = "normal",
rho = .95, corstr = "cs", wide = TRUE) #Normal distribution
19 cor(dat)
20 group <-rep(1:2, each=N)
21 wvalues <- ¢(dat$V2, dat§V3)
22 groupeddat <- data.frame(group, values)
23 write.csv(groupeddat, "D:\\groupeddat.csv", row.names = TRUE)
24 #normality test
25 shapiro.test(dat$V2)
26 shapiro.test(dat$V3)
27 #linearity test
28 plot(dat$V2, dat§V3)
29 abline(Im(dat§V2 ~ dat$V3))
30 #variance homogeneity test
31 wvar.test(values ~ group, data = groupeddat)
32 levene.test(groupeddat$values, groupeddat$group)
33 #establish a linear regression model
34 print(ggpairs(dat))
35 M <-Im(VI1~V2+V3, data=dat)
36 VIF <-vif(M)
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Appendix 2
Program for analysis of VIF values corresponding to different numbers of IVs and paired
correlations.

Line Statement
no.
1 require(faux) #for rnorm_multi
2 require(DAAG) #tor vif
3 require(tibble) #for add column
4 require(reshape?2) #for melt
5 require(ggplot2) #for ggplot
6 require(GGally) #extension to ggplot2
7  minNumlVs <- 2
8 maxNumlVs <- 30
9 minCorr <- 0.4
10 maxCorr <- 0.99
11 corrStep <- 0.01
12 N <-1000
13 vecCorrelations <- seq(minCorr, maxCorr, by=corrStep)
14 rowCount <- 0
15 for (corr in vecCorrelations) {
16 rowCount <- rowCount + 1
17 for (numVars in (minNumIVs +1):(maxNumlIVs +1)) {
18 dat <- rnorm_multi(n = N,
vars = numVvars,
mu =0,
sd=1,
I = COIT,
varnames = paste("V", seq(from=1, to=numVars), sep=""),
empirical = TRUE)
19 #cor(dat)
20 #dev.new()
21 #print(ggpairs(dat))
22 M <- Im(V1~., data=dat)
23 VIF <- mean(vif(M))
24 if (corr == minCorr && numVars ==(minNumlIVs +1)) {
25 VIFvector <- VIF
26 } else {
27 VIFvector <- append(VIFvector, VIF)
28 }
29 #write.csv(dat, paste(numVars, "v_cor", corr, ".csv", sep=""))
30 }
31}
32  matrixVIF = matrix(VIFvector, nrow=rowCount, ncol=maxNumlIVs -1,

byrow=TRUE)
33 colnames <- paste("", seq(from=minNumlIVs , to=maxNumlVs ), sep="")
colnames <- ¢("corr", colnames)
34 VIFdata <- as.data.frame(matrix VIF)
35 VIFdata <- add_column(VIFdata, vecCorrelations, .before = 1)
36 colnames(VIFdata) <- colnames
37 write.csv(VIFdata, paste("2to",maxNumlIVs, "v_cor", minCorr, "to",
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38

39
40
41

maxCorr, "-VIF.csv", sep=""))
melted = melt(VIFdata, id.vars="corr"
colnames(melted) <- c("vecCorrelations", "variables", "VIF")
ggplot(data=melted, aes(x=variables, y=VIF, group=vecCorrelations,
color=factor(vecCorrelations))) + scale x discrete(name="Num. of
Variables", breaks=seq(0, maxNumlIVs ,2))+
scale_y continuous(name="VIF", breaks=seq(0, 20, 0.5)) +
geom line()
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